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To understand the effects of orbital degeneracy on magnetism, in particular the effects of Hund’s rule
coupling, we study the two-orbital Hubbard model on a square lattice by a variational Monte Carlo method. As
a variational wave function, we consider a Gutzwiller-projected wave function for a staggered spin- and/or
orbital-ordered state. We find a ferromagnetic phase with staggered orbital order around quarter filling, i.e.,
electron number n=1 per site, and an antiferromagnetic phase without orbital order around half filling n=2. In
addition, we find that another ferromagnetic phase without orbital order is realized in a wide filling region for
large Hund’s rule coupling. These two ferromagnetic states are metallic except for quarter filling. We show that
orbital degeneracy and strong correlation effects stabilize the ferromagnetic states.
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The mechanism of itinerant ferromagnetism is a long-
standing problem in physics of condensed matter. As a
simple model for itinerant ferromagnetism, the single-orbital
Hubbard model has been studied intensively, but it has been
revealed that it is difficult to stabilize a ferromagnetic state in
the Hubbard model with only nearest-neighbor hopping on
simple lattices such as a square lattice.

One possible improvement to the Hubbard model for fer-
romagnetism is a modification of the band structure. Since
the early stage of the study of ferromagnetism, a large den-
sity of states around Fermi level, as in an fcc lattice with
appropriate filling, has been suggested to stabilize a ferro-
magnetic state.1–3 Indeed, realization of ferromagnetic
ground states is proven for some flatband systems4,5 and
nearly flatband systems.6 It is also shown that ferromag-
netism occurs for an fcc-like infinite-dimensional lattice and
for an fcc lattice by using a dynamical mean-field theory,7

while a dynamical mean-field theory for a hypercubic lattice
does not show ferromagnetism.8 For finite dimensions, it has
been shown that ferromagnetism can occur by including
next-nearest hopping, which induces Van Hove singularity,
for a chain9 and for a square lattice.10

Another possible improvement is the inclusion of orbital
degree of freedom, which may be important in dealing with
realistic situations in transition metals. For orbitally degen-
erate systems, it has been suggested that intra-atomic Hund’s
rule coupling can stabilize ferromagnetism.11–13 The simplest
extended model of the single-orbital Hubbard model includ-
ing orbital degree of freedom is the two-orbital Hubbard
model. This model shows ferromagnetism with antiferro-
orbital order at quarter filling, i.e., electron number n=1 per
site, in the strong Coulomb interaction limit.14

This ferromagnetic state at n=1 is insulating. Thus, it is
an interesting problem as to what extent is the ferromagnetic
state stable against doping of electron or hole which makes
the system metallic. It is found that the ferromagnetic state is
stable to some extent against doping in one dimension15 and
in infinite dimensions.16,17 For other finite dimensions, there
are few studies on doping effects on magnetism of the two-
orbital Hubbard model. Sakai et al.18 studied the two-orbital

Hubbard model on an fcc lattice by a dynamical mean-field
theory and stressed the importance of the lattice structure and
Hund’s rule coupling for ferromagnetism.

To understand the magnetism of the two-orbital Hubbard
model deeply, we have to investigate the model for many
parameter sets since the two-orbital Hubbard model has a
parameter for Hund’s rule coupling in addition to that for the
Coulomb interaction. However, such an extensive study is
difficult for a two-orbital model beyond the Hartree-Fock
approximation since there are as many as 16 electron con-
figurations at each site, and thus it is hard for numerical
calculations.

In this Rapid Communication, to overcome such diffi-
culty, we apply a variational Monte Carlo method19 to the
two-orbital Hubbard model on a square lattice. We use a
Gutzwiller-projected wave function as a variational wave
function. This wave function is simple enough but includes
correlation effects, and we can evaluate energy for several
states and for various parameters. In particular, we can con-
struct a phase diagram by varying the value of Hund’s rule
coupling and filling n. Thus, we can investigate the overall
feature of the two-orbital Hubbard model. At n=1, a similar
model without considering orbital order20 and the two-orbital
Hubbard model considering the possibility of orbital order21

have been studied by the variational Monte Carlo method,
but the effect of doping has not been investigated by these
studies, which is a main topic of the present Rapid
Communication.

The two-orbital Hubbard model is given by

H = �
k,�,�

�kck��
† ck�� + U�

i,�
ni�↑ni�↓ + U��

i

ni1ni2

+ J �
i,�,��

ci1�
† ci2��

† ci1��ci2� + J� �
i,����

ci�↑
† ci�↓

† ci��↓ci��↑,

�1�

where ci�� is the annihilation operator of the electron at site i
with orbital � �=1 or 2� and spin � �=↑ or ↓�, ck�� is the
Fourier transform of it, ni��=ci��

† ci��, and ni�=��ni��. The
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coupling constants U, U�, J, and J� denote the intraorbital
Coulomb, interorbital Coulomb, exchange, and pair-hopping
interactions, respectively. We use the relation U=U�+J+J�,
which is satisfied in several orbital-degenerate models such
as a model for p orbitals, a model for eg orbitals, and a model
for t2g orbitals.22 We also use the relation J=J�, which holds
if we can choose the wave functions of orbitals to be real.22

We consider only a nearest-neighbor hopping integral t for
both orbitals, and the kinetic energy is given by �k
=2t�cos kx+cos ky�. Here we have set the lattice constant to
unity.

We consider the variational wave function given by

��� = PG��� = �
i�

�1 − �1 − g���i���i��	��� , �2�

where PG is the Gutzwiller projection operator for onsite
density correlation.23–25 �i���i�� denotes the projection onto
the state � at site i and g� is the variational parameter con-
trolling the probability of state �. There are 16 states at each
site in the present two-orbital model. The Hartree-Fock-type
wave function ���, which describes charge, spin, orbital, and
spin-orbital coupled ordered states, is given by

��� = �
ka��

bk��
�a�†�0� , �3�

where �0� is the vacuum. The quasiparticles occupy N� states
for each spin � from the lowest quasiparticle energy state,
where N� is the number of electrons with spin �. The energy
of the quasiparticle in the ordered state is given by

�k��
�a� = a
���

2 + �k
2 . �4�

The creation operators of quasiparticles are given by

bk��
�−�† = uk��ck��

† + sgn�����vk��ck+Q��
† , �5�

bk��
�+�† = − sgn�����vk��ck��

† + uk��ck+Q��
† , �6�

where Q= �	 ,	� is the ordering vector considered in this
study and

uk�� = ��1 − �k/
���
2 + �k

2�/2	1/2, �7�

vk�� = ��1 + �k/
���
2 + �k

2�/2	1/2. �8�

The quasiparticle gap in the ordered state is given by

��� = �c + �s�
�↑ − 
�↓� + �o�
�1 − 
�2�

+ �so�
�↑ − 
�↓��
�1 − 
�2� , �9�

where �c, �s, �o, and �so denote the gaps for charge, spin,
orbital, and spin-orbital ordered states, respectively, and we
take them as variational parameters.

Here, we have chosen the z component of spin for the
ordered state. We can choose x or y component, but they are
equivalent due to the rotational symmetry in spin space. On
the other hand, there is rotational symmetry only in the z-x
plane in the orbital space. For orbital order, in addition to the
z component as in Eq. �9�, we have also investigated the
possibility of y-component order. The model Hamiltonian �1�
can be rewritten in terms of basis states of the y component

of orbital by replacing interaction parameters with tilde: Ũ

= �U+U�+J−J�� /2, Ũ�= �U+U�−J+J�� /2, J̃= �U−U�+J

+J�� /2, and J̃�= �−U+U�+J+J�� /2. Thus we can study the
y-component orbital order with the same form for the varia-
tional function by simply changing interaction parameters.

We evaluate the expectation value of energy for the varia-
tional wave function by using the Monte Carlo method, and
we optimize these gap parameters and the Gutzwiller param-
eters to minimize energy. For the optimization we use a fixed
sampling method.26,27 The number of parameters in the
Gutzwiller projection can be reduced from 16 to 10 by con-
sidering equivalence of the two orbitals.25 We can further
reduce the number of the Gutzwiller parameters to seven
when we consider the conservation of spin, i.e., when we fix
N�. Thus the total number of the variational parameters is 11.
Note that, in this study, we take partial-ferromagnetic states
into consideration and spin ↑ and ↓ are not equivalent for
these states. Thus we cannot reduce the number of the pa-
rameters further by considering spin states. We can also
evaluate energy by fixing some parameters, for example, we
set all the gap parameters to zero for a paramagnetic state.
The calculations have been done for a 12�12 lattice with
periodic-antiperiodic boundary conditions.

Figure 1 shows the energy E in ordered states per site
measured from the energy Epara per site in the paramagnetic
state as functions of n for U / t=15 and J / t=2 as an example.
Statistical errors are much smaller than the symbol sizes. In
the low filling region, the paramagnetic state is stable.
Around quarter filling, n=1, the ferromagnetic phase with
antiferro-orbital order appears. In the filling region, 1.38
�n�1.78, the ferromagnetic phase without orbital order ap-
pears. Around half filling, n=2, antiferromagnetic phase ap-
pears due to nesting of the Fermi surface. While we have
calculated energy of partial-ferromagnetic states, for ex-
ample, for m= �N↑−N↓� / �N↑+N↓�=0.5 shown in Fig. 1, these
states do not become the ground state.

Here we comment on the ground states at n=1 and 2. The
chemical potential  can be obtained from =dE /dn in the
ground state, and we also obtain the relation
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FIG. 1. �Color online� Filling dependence of energy for several
states measured from that of the paramagnetic state: spin-antiferro
�AF� orbital-para �m=0, �s�0, �o=0, and solid triangles�, partial-
ferro m=0.5 orbital-para ��s=0, �o=0, and solid squares�, spin-
ferro orbital-para �m=1, �s=0, �o=0, and solid circles�, and spin-
ferro orbital-AF �m=1, �s=0, �o�0, and open circles�.
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dn

d

d2E

dn2 = 1. �10�

Thus, in an insulating state, i.e., dn /d=0, the second de-
rivative of energy E with respect to n should diverge and
vice versa. At n=1, the ground-state energy has a cusp as
shown in Fig. 1 and the ground state is insulating. Note that
we can obtain energy for n�2 from the present data by
using electron-hole symmetry of the model, and we find a
cusp in the ground-state energy also at n=2.

Figure 2 shows the phase diagrams for U / t=9 and 15.
First, we explain the phase diagram �Fig. 2�b�	 for U / t=15.
The ferromagnetic phase with antiferro-orbital order appears
around quarter filling as is expected from the effective
Hamiltonian for the strong-coupling limit. However, it is
found that this ferromagnetic phase is easily destabilized by
doping. To stabilize this ferromagnetic phase in a wider fill-
ing region, a much larger value of Coulomb interaction is
necessary.

This ferromagnetic phase is also destabilized by increas-
ing Hund’s rule coupling J. Hund’s rule coupling is usually
expected to stabilize magnetically ordered states, but the ef-
fective interaction Ueff=U�−J between different orbitals is
reduced by Hund’s rule coupling. Thus, Hund’s rule coupling
destabilizes the orbital order, and as a result, the ferromag-
netic state supported by the orbital order is also destabilized.
Note that in the ferromagnetic phase, there is rotational sym-
metry in the orbital space, and orbital order for the x, y, and
z components are equivalent.

At higher filling region, another ferromagnetic phase
without orbital order appears in a large Hund’s rule coupling
region. The ferromagnetic phase extends in a wide parameter
region for n�1, while it does not for n�1. This finding is in
agreement with the statement that double-exchange-like
mechanism works well for n�1 since the probability of
double occupancy is high, but it is less effective for n�1.17

In this ferromagnetic phase at n�1 and J /U�0.3, we
expect an orbital-antiferro order, since in the ferromagnetic
state the model is reduced to the single-orbital Hubbard
model with effective interaction Ueff if we regard spin in the
single-orbital Hubbard model as orbital, and around n=1 an
orbital-antiferro state should occur. However, it is difficult to
distinguish a small energy difference between orbital-para
and orbital-antiferro states around there due to the small
value of Ueff. Thus, the phase boundary between spin-ferro
orbital-para and spin-ferro orbital-antiferro in Fig. 2�b� is
merely a guide to the eyes.

Around half filling, the antiferromagnetic phase appears
as expected from the nesting of Fermi surface. The phase
transition from the paramagnetic phase to the antiferromag-
netic phase is of the second order. We have checked that the
energy difference between these phases is proportional to
�n−nc�2 for n�nc, where nc is the critical filling. Note that
the spin-ferro orbital-antiferro state at n=1 and the spin-
antiferro orbital-para state at n=2 are insulating, and other
ground states are metallic.

By reducing the Coulomb interaction U, the regions of the
ordered phases become narrower as shown in Fig. 2�a� for
U / t=9. In particular the spin-ferro orbital-antiferro state dis-
appeared. At n=1, the ferromagnetic state with orbital order
disappears at U / t�10.21 The other ferromagnetic phase
without orbital order is also easily destabilized by reducing
the Coulomb interaction. This fact indicates that realization
of ferromagnetism is a strong correlation effect. On the other
hand, the antiferromagnetic phase around half filling, which
is stabilized by the nesting of the Fermi surface and can be
obtained with a weak-coupling theory, is realized in a wide
region even at U / t=9.

Note that we have also calculated the energy of the single-
orbital Hubbard model within the Gutzwiller wave function,
and we have found that a much larger value of Coulomb
interaction U / t�23 is necessary to stabilize a ferromagnetic
phase. Thus, the orbital degeneracy and Hund’s rule coupling
are important ingredients for the realization of ferromag-
netism with a moderate value of the Coulomb interaction.

To summarize, we have studied the two-orbital Hubbard
model on a square lattice by a variational Monte Carlo
method. We have considered charge, spin, orbital, and spin-
orbital coupled ordered states for the variational wave func-
tion. Then, we have constructed phase diagrams for the
ground states. We find a narrow region of the ferromagnetic
state with orbital-antiferro order around quarter filling and a
wide region of ferromagnetic phase without orbital order at
large Hund’s rule coupling for U / t=15. The ferromagnetic
phase with orbital order is easily destabilized by doping and
by reducing the Coulomb interaction. The ferromagnetic
phase without orbital order is also destabilized strongly by
reducing the Coulomb interaction. Thus, realization of ferro-
magnetic states is a strong correlation effect. Investigation of
the effects of realistic anisotropic hopping integral depending
on orbital and further improvement of the variational wave
function are important future problems.

The author thanks T. Takimoto and P. Thalmeier for read-
ing the manuscript and useful comments. This work is sup-
ported by the Japan Society for the Promotion of Science.
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FIG. 2. �Color online� Phase diagrams for �a� U / t=9 and for �b�
U / t=15. Solid lines denote first-order transitions and dashed lines
denote second-order transitions.
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